
Bob Crovella, 5/13/2020

ATOMICS, REDUCTIONS,
WARP SHUFFLE

2

AGENDA

• Transformations vs. Reductions, Thread Strategy
• Atomics, Atomic Reductions
• Atomic Tips and Tricks
• Classical Parallel Reduction
• Parallel Reduction + Atomics
• Warp Shuffle, Reduction with Warp Shuffle
• Other Warp Shuffle Uses
• Further Study
• Homework

3

ATOMICS

4

MOTIVATING EXAMPLE
Sum - reduction

const int size = 100000;

float a[size] = {…};

float sum = 0;

for (int i = 0; i < size; i++) sum += a[i];

-> sum variable contains the sum of all the elements of array a

5

TRANSFORMATION VS. REDUCTION
May guide the thread strategy: what will each thread do?

+

Reduction:

e.g. *c = S a[i]

Thread strategy: ??

Transformation:

e.g. c[i] = a[i] + 10;

Thread strategy: one thread per output
point

6

REDUCTION: NAÏVE THREAD STRATEGY
One thread per input point

*c += a[i];

(Doesn’t work.) Actual code the GPU executes:

LD R2, a[i] (thread independent)

LD R1, c (READ)

ADD R3, R1, R2 (MODIFY)

ST c, R3 (WRITE)

But every thread is trying to do this, potentially at the same time

The CUDA programming model does not enforce any order of thread execution

7

ATOMICS TO THE RESCUE
indivisible READ-MODIFY-WRITE

atomicAdd(&c, a[i]); https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

LD R2, a[i] (thread independent)

LD R1, c (READ) Becomes one indivisible operation/instruction:

ADD R3, R1, R2 (MODIFY) RED.E.ADD.F32.FTZ.RN [c], R2;

ST R3, c (WRITE)

Facilitated by special hardware in the L2 cache

May have performance implications

8

OTHER ATOMICS

atomicMax/Min – choose the max (or min)

atomicAdd/Sub – add to (or subtract from)

atomicInc/Dec – increment (or decrement) and account for rollover/underflow

atomicExch/CAS – swap values, or conditionally swap values

atomicAnd/Or/Xor – bitwise ops

atomics have different datatypes they can work on (e.g. int, unsigned, float, etc.)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

9

ATOMIC TIPS AND TRICKS

Could be used to determine next work item, queue slot, etc.

int my_position = atomicAdd(order, 1);

Most atomics return a value that is the “old” value that was in the location receiving the
atomic update.

Determine my place in an order

10

ATOMIC TIPS AND TRICKS

Each thread in my kernel may produce a variable amount of data. How to collect all of this
in one buffer, in parallel?

buffer_ptr:

buffer_idx

int my_dsize = var;

float local_buffer[my_dsize] = {…};

int my_offset = atomicAdd(buffer_idx, my_dsize);

// buffer_ptr+my_offset now points to the first reserved location, of length my_dsize

memcpy(buffer_ptr+my_offset, local_buffer, my_dsize*sizeof(float));

Reserve space in a buffer

11

CLASSICAL
PARALLEL REDUCTION

12

THE CLASSICAL PARALLEL REDUCTION

We would like a reduction method that is not limited by atomic throughput

We would like to effectively use all threads, as much as possible

Parallel reduction is a common and important data parallel primitive

Naïve implementations will often run into bottlenecks

Basic methodology is a tree-based approach:

Atomics don’t run at full memory bandwidth…

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

13

PROBLEM: GLOBAL SYNCHRONIZATION
If we could synchronize across all thread blocks, could easily reduce very large arrays, right?

Global sync after each block produces its result

Once all blocks reach sync, continue recursively

One possible solution: decompose into multiple kernels

Kernel launch serves as a global synchronization point

Kernel launch has low SW overhead (but not zero)

Other possible solutions:

Use atomics at the end of threadblock-level reduction

Use a threadblock-draining approach (see threadFenceReduction sample code)

Use cooperative groups – cooperative kernel launch

14

SOLUTION: KERNEL DECOMPOSITION
Create global sync by decomposing computation into multiple kernel invocations

In the case of reductions, code for all levels is the same

15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

Sequential
addressing is
bank-conflict
free

SEQUENTIAL ADDRESSING
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {

if (tid < s) {
sdata[tid] += sdata[tid + s]; }

__syncthreads(); // outside the if-statement
}

15

| grid-width stride | grid-width stride | grid-width stride …

int idx = threadIdx.x+blockDim.x*blockIdx.x;
while (idx < N) {

sdata[tid] += gdata[idx];
idx += gridDim.x*blockDim.x; // grid width
}

DETOUR: GRID-STRIDE LOOPS

We’d like to be able to design kernels that load and operate on arbitrary data sizes
efficiently

Want to maintain coalesced loads/stores, efficient use of shared memory

Can also be used for ninja-level tuning – choose number of blocks sized to the GPU

gdata[0..N-1]:

16

__global__ void reduce(float *gdata, float *out){
__shared__ float sdata[BLOCK_SIZE];
int tid = threadIdx.x;
sdata[tid] = 0.0f;
size_t idx = threadIdx.x+blockDim.x*blockIdx.x;

while (idx < N) { // grid stride loop to load data
sdata[tid] += gdata[idx];
idx += gridDim.x*blockDim.x;
}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
__syncthreads();
if (tid < s) // parallel sweep reduction

sdata[tid] += sdata[tid + s];
}

if (tid == 0) out[blockIdx.x] = sdata[0];
}

PUTTING IT ALL TOGETHER

17

GETTING RID OF THE 2ND KERNEL CALL
__global__ void reduce_a(float *gdata, float *out){

__shared__ float sdata[BLOCK_SIZE];
int tid = threadIdx.x;
sdata[tid] = 0.0f;
size_t idx = threadIdx.x+blockDim.x*blockIdx.x;

while (idx < N) { // grid stride loop to load data
sdata[tid] += gdata[idx];
idx += gridDim.x*blockDim.x;
}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
__syncthreads();
if (tid < s) // parallel sweep reduction

sdata[tid] += sdata[tid + s];
}

if (tid == 0) atomicAdd(out, sdata[0]);
}

18

WARP SHUFFLE

19

INTER-THREAD COMMUNICATION: SO FAR

Using shared memory:

2 1

Threads:

Wouldn’t this be convenient:

1

Threads:

20

INTRODUCING WARP SHUFFLE

Allows for intra-warp communication

Various supported movement patterns:

__shfl_sync(): copy from lane ID (arbitrary pattern)

__shfl_xor_sync(): copy from calculated lane ID (calculated pattern)

__shfl_up_sync(): copy from delta/offset lower lane

__shfl_down_sync(): copy from delta/offset higher lane:

Both source and destination threads in the warp must “participate”

Sync “mask” used to identify and reconverge needed threads

21

__global__ void reduce_ws(float *gdata, float *out){
__shared__ float sdata[32];
int tid = threadIdx.x;
int idx = threadIdx.x+blockDim.x*blockIdx.x;
float val = 0.0f;
unsigned mask = 0xFFFFFFFFU;
int lane = threadIdx.x % warpSize;
int warpID = threadIdx.x / warpSize;
while (idx < N) { // grid stride loop to load

val += gdata[idx];
idx += gridDim.x*blockDim.x;
}

// 1st warp-shuffle reduction
for (int offset = warpSize/2; offset > 0; offset >>= 1)

val += __shfl_down_sync(mask, val, offset);
if (lane == 0) sdata[warpID] = val;

__syncthreads(); // put warp results in shared mem

WARP SHUFFLE REDUCTION

// hereafter, just warp 0
if (warpID == 0){

// reload val from shared mem if warp existed
val = (tid < blockDim.x/warpSize)?sdata[lane]:0;

// final warp-shuffle reduction
for (int offset = warpSize/2; offset > 0; offset >>= 1)

val += __shfl_down_sync(mask, val, offset);

if (tid == 0) atomicAdd(out, val);
}

}

22

WARP SHUFFLE BENEFITS

Reduce or eliminate shared memory usage

Single instruction vs. 2 or more instructions

Reduce level of explicit synchronization

23

WARP SHUFFLE TIPS AND TRICKS

Broadcast a value to all threads in the warp in a single instruction

Perform a warp-level prefix sum

Atomic aggregation

What else can we do with it?

24

FUTURE SESSIONS

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups

25

FURTHER STUDY
Parallel reduction:

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Warp-shuffle and reduction:

https://devblogs.nvidia.com/faster-parallel-reductions-kepler/

CUDA Cooperative Groups:

https://devblogs.nvidia.com/cooperative-groups/

Grid-stride loops:

https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

Floating point:

https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-
Point.pdf

CUDA Sample Codes:

Reduction, threadFenceReduction, reductionMultiBlockCG

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/cooperative-groups/
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf

26

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md

